
NATIONAL CHENG KUNG UNIVERSITY

ADAPTIVE CONTROL FINAL PROJECT

REAL-TIME PARAMETER ESTIMATION AND

PREDICTION-BASED CONTROL FOR AIRCRAFT

PITCH DYNAMICS

INSTRUCTOR: Dr. Ming-Shaung Ju

STUDENT: Yang-Rui Li

STUDENT ID: P48104011 (DAA)

July 3, 2021



Adaptive Control Final Project

Real-Time Parameter Estimation and Prediction-Based

Control for Aircraft Pitch Dynamics

Yang-Rui Li*

Intelligent Embedded Control Laboratory

Department of Aeronautics and Astronautics

National Chang Kung University

Taiwan, Taiwan

July 3, 2021

Abstract

In this work, real-time parameter estimation and prediction-based control for the aircraft pitch

dynamics is proposed. The presented recursive least-squares (RLS) estimator based on integral

operator enables real-time estimating the parameters of the system, and it also provides a state

prediction model. Introducing the integral operator has the benefit that the RLS estimator is

low-sensitivity to noisy signals. Based on predicted state info, the controller performance can

be further improved. The simulation result reveals that the effectiveness of the proposed control

scheme.

Keywords: Real-time parameter estimation, RLS estimator, integral operator, prediction

model, prediction-based control.

1 Introduction

In this work, real-time parameter estimation and prediction-based control for the aircraft pitch dy-

namics is proposed. For most flight vehicles, the ope-loop plant is unstable in general. It means that

the parameters and stabilizing control feedback should be conducted at the same time. The main

difficulty of the closed-loop excitation is that if the modes of the system cannot be well excited, there

will be a relatively large error between the estimated parameters and the actual parameters, which will
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affect the performance of the controller. In addition, the measured noise will also affect the perfor-

mance of parameter estimation/control feedback. For these reasons, the RLS estimator based on the

integral operator is proposed. Apart from the real-time estimating the system parameters, and also

inhibiting the influence of measured noised on the parameter estimates. Furthermore, a state predic-

tion model based on the RLS estimator is proposed, which can estimate more accurate and smooth

state information, one enables the performance of the controller to be further improved. Compare the

proposed prediction-based controller scheme with the traditional proportional-integral (PI) controller,

the simulation result reveals the outstanding performance of the proposed controller for trajectory

tracking/real-time parameter estimation.

The organization of this article is summarized as follows. In Section 2, the dynamic equation

equations are introduced. Based on the system structure, the RLS estimator based on integral op-

erator and the corresponding state prediction model are proposed in Section 3. The design of the

prediction-based controller is presented in Section 4. For comparison, the traditional output feedback

PI controller is applied in Section 5. The comparitive simulation is performed in Section 6. Finally,

the conclusion and future work are made in Section 7.

2 Dynamics Equation of Aircraft Pitch Dynamics

The state-space model for aircraft pitching motion is given by

ẋ(t) = Ax(t) + Bu(t) (1)

where x(t) = [Nz, θ̇, δe]T is the state vector; u is the input signal of the aileron servo; and the system

matrices are

A =


a11 a12 a13

a21 a22 a23

0 0 −a

 ; B =


b1

0

a

 (2)

This model is called short-period dynamics. The parameters of the model given depend on the oper-

ating conditions, which can be described in terms of Mach number and altitude. Consider the aircraft

is operated on the Mach number 0.5 and the altitude 5000 feet. The nominal parameters, true param-

eters, and true eigenvalues are provided in Table 1.

Table 1: True and nominal parameters of the system.

Parameter a11 a12 a13 a21 a22 a23 a b

Nominal Value −0.4948 8.705 48.075 0.1324 −0.4256 −5.695 7 −48.89

True Value −0.9896 17.41 96.15 0.2648 −0.8512 −11.39 14 −97.78

True e-value λ1 = −3.07, λ2 = 1.23, λ3 = −14.
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It can be found that the system is unstable due to the unstable mode λ = 1.23. Therefore, the

parameter estimation should be performed in a closed-loop to ensure that the system is excited in

a stable region. In this project, we consider the case that all the true parameters of the system are

unknown and only the nominal values are available. In the following section, the RLS estimator

based on the integral operator is proposed to estimate the unknown parameters and to predict the

system states.

3 Parameter Estimation via Recursive Least-Squares Algorithm

Consider the regressive equation of the form

y(k) = ϕT(k)θ (3)

where y(k) ∈ R1 is the equation output; ϕ(k) ∈ Rn is the regressor vector; and θ ∈ Rn is the

unknown parameters to be estimated. The recursive least-squares (RLS) estimator for (3) is given by

[1]
θ̂(k) = θ̂(k− 1) + K(k)

(
y(k)−ϕT(k)θ̂(k− 1)

)
(n× 1)

K(k) = P(k− 1)ϕ(k)
(

1 +ϕT(k)P(k− 1)ϕ(k)
)−1

(n× 1)

P(k) =
(

In −K(k)ϕT(k)
)

P(k− 1) (n× n)

(4)

In which, θ̂ denotes the estimate of θ and the initial condition is θ̂(0) = θ̂0, P(0) = P0.

To construct the RLS estimator, the system dynamics (1) should be rewritten as the regressive

form, which is
ẋ1(t) = ϕT

1(t)θ1

ẋ2(t) = ϕT
2(t)θ2

ẋ3(t) = ϕT
3 (t)θ3

(5)

where
ϕT

1(t) =
[
u(t) x1(t) x2(t) x3(t)

]
θ1 =

[
b a11 a12 a13

]T

ϕT
2(t) =

[
x1(t) x2(t) x3(t)

]
θ2 =

[
a21 a22 a23

]T

ϕT
3 (t) =

[
−x3(t) + u(t)

]
θ3 =

[
a
] (6)

Based on the measured info [x1(t), x2(t), x3(t)] and [ẋ1(t), ẋ2(t), ẋ3(t)]. The system parameters

θ1, θ2, and θ3 can be easily identified. However, the state derivatives [ẋ1(x), ẋ2(t), ẋ3(t)] cannot

be acquired by measurement sensors in general. One of the methods is to estimate these quantities

by numerical differentiation. However, the numerical differentiation will amplify the measured noise

and result in the in-precise parameter estimation. As a reason, the numerical differentiation should be

avoided. In what follows, an integral operator is introduced to conduct the parameter estimation.
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3.1 RLS Estimator with Integral Operator

Applying the Laplace transform for (5) gives

sX1(s)− x1(0) =
[
U(s) X1(s) X2(s) X3(s)

]
θ1

sX2(s)− x2(0) =
[

X1(s) X2(s) X3(s)
]

θ2

sX3(s)− x3(0) =
[
−X3(s) + U(s)

]
θ3

(7)

where s is the Laplace operator and U(s) = L {u(t)}, Xi(s) = L {xi(t)}, i = 1, 2, 3.

Introducing the integral operator 1/(s + λ) yields

X1 f
1 (s) =

[
φ

1 f
u (s) φ

1 f
x1 (s) φ

1 f
x2 (s) φ

1 f
x3 (s)

]
θ1

X1 f
2 (s) =

[
φ

1 f
x1 (s) φ

1 f
x2 (s) φ

1 f
x3 (s)

]
θ2

X1 f
3 (s) =

[
−φ

1 f
x3 (s) + φ

1 f
u (s)

]
θ3

(8)

where λ ≥ 0 is the integral factor, and

φ
1 f
u (s) =

U(s)
s + λ

; φ
1 f
xi (s) =

Xi(s)
s + λ

; X1 f
i (s) =

sXi(s)− xi(0)
s + λ

; i = 1, 2, 3. (9)

Reformulating X1 f
i (s) to eliminating sXi(s) produces

X1 f
i (s) =

sXi(s)− xi(0)
s + λ

=
(s + λ)Xi(s)− λXi(s)− xi(0)

s + λ

= Xi(s) + Yi1(s), Yi1(s) =
−λXi(s)− xi(0)

s + λ
, i = 1, 2, 3. (10)

Inverse Laplace transform for (8) results in

x1(t) + y11(t) =
[
φ

1 f
u (t) φ

1 f
x1 (t) φ

1 f
x2 (t) φ

1 f
x3 (t)

]
θ1 , ϕT

1 f (t)θ1

x2(t) + y21(t) =
[
φ

1 f
x1 (t) φ

1 f
x2 (t) φ

1 f
x3 (t)

]
θ2 , ϕT

2 f (t)θ2

x3(t) + y31(t) =
[
−φ

1 f
x3 (t) + φ

1 f
u (t)

]
θ3 , ϕ3 f (t)θ3

(11)

where
ϕT

1 f (t) =
[
φ

1 f
u (t) φ

1 f
x1 (t) φ

1 f
x2 (t) φ

1 f
x3 (t)

]
ϕT

2 f (t) =
[
φ

1 f
x1 (t) φ

1 f
x2 (t) φ

1 f
x3 (t)

]
ϕ3 f (t) =

[
−φ

1 f
x3 (t) + φ

1 f
u (t)

] (12)

and
φ̇

1 f
u (t) = −λφ

1 f
u (t) + u(t), φ

1 f
u (0) = 0

φ̇
1 f
xi (t) = −λφ

1 f
xi (t) + xi(t), φ

1 f
xi (0) = 0

ẏi1(t) = −λyi1 − λxi(t), yi1(0) = −xi(0), i = 1, 2, 3.

(13)
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Hence, it can be seen that the regressive formula (11) is in terms of measurable data xi(t), i =

1, 2, 3. The RLS estimators can then be used to estimate the system parameters θ1, θ2, and θ3. Taking

the first equation in (11) as an example, letting y(k) = x1(k) + y11(k) and ϕT(k) = ϕT
1 f (k), the

estimates θ̂1 = [â11, â12, â13, â14]
T can then be obtained by the RLS estimator (4). In the same

manners, the estimates θ̂2 and θ̂3 can be also acquired.

3.2 Prediction Model Based on RLS Estimator

From the proposed regressive formula (11), the following predicted model based on RLS estimator is

established:
x1p(t) = −y11(t) +ϕT

1 f (t)θ̂1

x2p(t) = −y21(t) +ϕT
2 f (t)θ̂2

x3p(t) = −y31(t) + ϕ3 f (t)θ̂3

(14)

where x1p(t), x2p(t), and x3p(t) represent the predicted states of x1(t), x2(t), and x3(t), respec-

tively; and the estimates θ̂1, θ̂2, θ̂3 are obtained from RLS estimators. The author believes that xip(t)

can be also interpreted as the “estimated” state because the input and measurable states info are used

in (14).

In what follows, the state-feedback control with integral action based on estimated parameters and

the predicted states, namely prediction-based control, is presented.

4 Prediction-Based Control

Consider the linear system described by (1). Let y(t) = x1(t) be the control objective to be tracked.

Define the tracking error as e(t) = Cx(t)− r(t), where C = [1, 0, 0]. The state-feedback control

law with integral action is given by

u(t) = −Fx(t)− Ff z(t) (15)

where F ∈ R1×3 is the state-feedback gain matrix; Ff ∈ R1 is the integral gain; and

ż(t) = e(t) = Cx(t)− r(t) (16)

The term −Fx(t) can be seen as used for stabilizing the state variables, as for −Ff z(t) driving the

specified state variable to the desired one.

Combining (1) and (16) produces the augmented system as[
ẋ(t)

ż(t)

]
=

[
A 03×1

C 0

] [
x(t)

z(t)

]
+

[
B

0

]
u(t) +

[
03×1

−1

]
r(t) (17)

Substituting (15) into (17) follows that[
ẋ(t)

ż(t)

]
=

([
A 03×1

C 0

]
−
[

B

0

] [
F Ff

]) [x(t)

z(t)

]
+

[
03×1

−1

]
r(t) (18)
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or, in short,

Ẋ(t) =
(
Aaug − BaugFaug

)
X(t) + Γr(t) (19)

where

X(t) =

[
x(t)

z(t)

]
; Aaug =

[
A 03×1

C 0

]
; Baug =

[
B

0

]
; Γ =

[
03×1

−1

]
; Faug =

[
F Ff

]
(20)

Thus, it has to design the augmented state-feedback gain matrix Faug to guarantee the closed-loop

system matrix Aaug,c = Aaug − BaugFaug is Hurwitz. And then we have

x1(t)→ r(t), x2(t)→ 0, x3(t)→ 0 as t→ ∞ (21)

Because the DC-gain of r(t)→ x1(t) is

Gaug(s) = Caug
(
sI4 −Aaug,c

)−1
Γ → Gaug(0) = Caug

[
−Aaug,c

]−1
Γ = 1 (22)

Notice that Caug = [1, 0, 0, 0].

Based on the estimated parameters and states, the prediction-based state-feedback (PSB) con-

troller is given by

u(t) = −Fxp(t)− Ff zp(t) (23)

where xp = [x1p, x2p, x2p]
T; żp = x1p(t)− r(t); and (F, Ff ) are designed based on estimated system

matrices. The overall control scheme is provided by Figure 1.

In the following simulations, the integral factor λ = 15 is considered. Based on the parameter

estimates, place the estimated closed-loop poles at −10, −12, −13, −14. The nominal values are

used as the initial guess of the RLS estimator, and P(0) = 104 In is applied.

Aircraft
Dynamics

RLS 
Estimator

Prediction-Based 
Controller

Reference 
Command

Sensing 
Noise

+

+

Real-Time Parameter Estimation and State Prediction Loop

inx

ix

,i ipxθ

u1dx

Flight Controller

in

Figure 1: Control block diagram of the prediction-based control.
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5 Proportional-Integral Controller

To compare the performance of proposed prediction-based state-feedback controller and the tradi-

tional controller, the PI controller is designed in this section. Consider the PI controller of the form:

Gc(s) = kp + ki
1
s

(24)

where kp > 0 and ki > 0 to be designed. In the sense of controller design, the nominal values of the

system will be used in designing the controller so that the desired nominal closed-loop performance

can be achieved. Based on Matlab’s PID tuner toolbox, the control gains (kp, ki) are designed as

kp = −0.8956; ki = −0.0425 (25)

The corresponding nominal and true closed-loop systems are

Td(s) =
43.787(s + 0.04746)(s2 + 0.5423s + 7.148)

(s + 51.21)(s + 0.04853)(s2 + 0.446s + 5.977)
(26)

and

T(s) =
87.575(s + 0.04746)(s2 + 1.085s + 28.59)
(s + 102.5)(s + 0.04851)(s2 + 0.9s + 23.91)

(27)

respectively. It can be found that the true closed-loop system T(s) is stable in this case. It should be

noticed the T(s) is not always stable by using the nominal values to design the controller.

The following simulations will compare the tracking performance for the proposed PSB controller

and the PI controller.

6 Numerical Simulation

6.1 Command Smoothing Strategy

To avoid the aggressive commands result in the control oscillation/structure resonance, the command

prefilter is designed to eliminate the high-frequency command inputs. Consider the following transfer

function:

G f (s) =
1

(τs + 1)n (28)

where τ = 1/(2πFc), Fc is cut-off frequency. The smooth command input is given by

r f (s) = Gs(s)r(s) (29)

where r(s) and r f (s) are the original and smooth command input, respectively. Figure 2 shows the

profile of these commands. In which, n = 5 and Fc = 0.5 (Hz) are used.

In the other words, smooth command r f (t) will be used as the desired command input x1d(t).

The control objective is to drive x1(t) → x1d(t), the simulation results of the two controllers are

shown as follows.
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Figure 2: Comparison of original command r(t) and smooth command r f (t).

6.2 Simulation Results

In this project, we consider the measured noise, which is Gaussian white noise with normal distri-

bution N (0, σ2), where σ2 is the variance of the noise. Figure 3 displays the evolution of measured

noise.

The simulation results for the PI and the PSB controllers are shown in Figure 4–Figure 7.

Figure 4 compares the tracking performance for PI controller and PSB controller. It can be seen

that the state chattering occurs for the PI controller but for the PSB controller does not. For the PSB

controller, the predicted states very close to the actual states. The same observation can be found

in Figure 5. Therefore, it can deduce that the performance of the proposed prediction-based control

scheme is better than traditional PI control.

The evolution of the control signal for PI and PSB controller is shown in Figure 6. Apparently,

the chattering of the control signal is induced due to the noisy state feedback in the case of the PI

controller. In contrast, by using the predicted states in the feedback process, the chattering of the

control can be significantly improved, and the tracking performance is also increased.
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0
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(a) Noise of x1(t) (σ = 0.1).
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(b) Noise of x2(t) (σ = 0.005).
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(c) Noise of x3(t) (σ = 0.003).

Figure 3: Evolution of measured noise.
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(b) PSB controller.

Figure 4: Comparison of measured, actual, and desired state for PI controller and PSB controller.
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Figure 5: State response for PI and PSB controller.
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Figure 6: Evolution of control signal for PI and PSB controller.

0 10 20 30 40 50

-100

-50

0 10 20 30 40 50

-10

-5

0

5

0 10 20 30 40 50
0

10

20

30

0 10 20 30 40 50

Time (sec)

50

100

(a) b, a11, a12, a13.

0 10 20 30 40 50
0

0.5

1

1.5

0 10 20 30 40 50
-1.5

-1

-0.5

0

0 10 20 30 40 50

-10

-5

0 10 20 30 40 50

Time (sec)

10

15

(b) a21, a22, a23, a.

Figure 7: Evolution of parameter estimates.

The evolution of parameter estimates are shown in Figure 7. The final values of the estimated

parameters are (the parentheses display the true value and absolute relative error)

b = −109.6195 (−97.78)(12.1%); a21 = 0.2609 (0.2648)(1.48%)

a11 = −1.0067 (−0.9896)(1.73%); a22 = −0.8338 (−0.8512)(2.05%)

a12 = 22.3809 (17.41)(28.55%); a23 = −11.2413 (−11.39)(1.31%)

a13 = 93.3992 (96.15)(2.86%); a = 13.4838 (14)(3.69%)

(30)

It can be found that the estimated values converge to the near of the true values.
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7 Conclusion and Future Work

In this project, propose a real-time parameter estimation and prediction-based control scheme. By

means of introducing the integral operator, the performance of parameter estimates is increased. The

corresponding prediction model also gives smooth predicted states such that the control chattering

can be avoided. The simulation result indicates that the proposed prediction-based controller is better

than the traditional PI controller. The benefits and effectiveness of real-time parameter estimation

prediction-based control have been revealed.

Regarding this research, some future work needs to be completed. The design of the more compli-

cated nonlinear dynamic model should be taken into consideration. The technique such as unknown

input reconstruction/disturbance observer should be studied so that the RLS estimator has accurate

parameter estimates. The experimental study should be performed to validate the theoretical study.
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MATLAB Scripts and SIMULINK Block Diagram

The simulation of this work is carried out by the SIMULINK simulator. The block diagram and

MATLAB scripts are shown as follows.

SIMULINK Block Diagram

sys_cS_Controller

u(k)

x(k)

Parameters

xp

sys_c1
s

Parameters

Figure 8: SIMULINK block diagram.

Main_Aircraft_Cmd.m

1 clear; clc; close all;

2

3 Ts = 0.001;

4 T_end = 50;

5 t = (0:Ts:T_end)’;

6

7 y = y_ramp(5,15,25,Ts,1);

8 y = [y; flipud(y(1:end-1))];

9

10 s = tf(’s’);

11 Fc = 0.5;

12 tau = 1/(2*pi*Fc);

13 G = 1/(tau*s+1)^5;

14
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15 yf = lsim(G,y,t);

16

17 save(’Data\Cmd’,’yf’,’t’);

Main_Aircraft_RLS_Control.m

1 clear; clc; close all;

2

3 addpath(’Subroutines’);

4

5 cmd = load(’Data\Cmd.mat’);

6 pid = load(’Data\PID_nominal.mat’);

7

8 t = cmd.t;

9 yd = cmd.yf;

10 StepSize = 0.001;

11 Ts = t(2)-t(1);

12 T_zoh = t(2)-t(1);

13 T_end = t(end);

14

15 % Reference Command

16 simin.time = t;

17 simin.signals.values = yd;

18 simin.signals.dimensions = 1;

19

20 % System Parameters

21 [Ac,Bc,X_True] = Aircraft_Para(1); C = eye(3); D = zeros(3,1);

22 sys_c = ss(Ac,Bc,C,D);

23 u_max = 20;

24 u_min = 20;

25 A_aug = [Ac zeros(3,1); 1 0 0 0];

26 B_aug = [Bc; 0];

27 [K_aug,S,E] = lqr(A_aug,B_aug,eye(4),10000000);

28

29 % Integral operator

30 lambda = 15;

31 sys_f_1 = ss(-lambda,-lambda,1,0); sys_f_1 = c2d(sys_f_1,Ts);

13



32 sys_f_2 = ss(-lambda,1,1,0); sys_f_2 = c2d(sys_f_2,Ts);

33

34 P_cov = 1e+4;

35 X0 = 0.5.*X_True;

36

37 % Moise level

38 N1 = (1*0.1)^2;

39 N2 = (0.05*0.1)^2;

40 N3 = (0.03*0.1)^2;

41

42 % Control Gains

43 para.Pole = [-10 -12 -13 -14];

44

45 Kp = pid.G_PID.Kp;

46 Kd = pid.G_PID.Kd;

47 Ki = pid.G_PID.Ki;

48 Tf = pid.G_PID.Tf;

49

50 simout = sim(’Sim_Aircrft_RLS_Control’);

51

52 save(’Data\Sim_Data’);
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