System Parameter Identification of Quadrotor

Yang-Rui Li (李洋銳) Department of Aeronautics and Astronautics

Final Report 15:10 - 18:10, June 15 (Tuesday), 2021 Curriculum on Applied System Identification Department of Engineering Science National Cheng Kung University Tainan, Taiwan February 22 - June 22, 2021

Professor: Jer-Nan Juang

Outline

Introduction

- Problem Statement
- Oynamics Modeling
- 4 Simulation Background and I/O Data
- Signal Processing
- 6 Parameter Identification via Integral Method
- 🧑 Velocity and Acceleration Estimation via OKID
- 8 Conclusion
- 🧿 Future Work

Outline

Introduction

- 2 Problem Statement
- 3 Dynamics Modeling
- 4 Simulation Background and I/O Data
- 5 Signal Processing
- Parameter Identification via Integral Method
- 7 Velocity and Acceleration Estimation via OKID
- 8 Conclusion
- 🧿 Future Work

Section 1

Introduction

- Motivation
- Main Difficulties for Estimating Quadrotor's Parameters and Solutions

Motivation: Why do we identify the parameters of the system?

Motivation

- Identifying the system parameters is useful for the control design.
- Also, it can be applied in the redesign of dynamic configuration for obtaining more better dynamic properties.

Outline

- 3 Dynamics Modeling
- 4 Simulation Background and I/O Data
- 5 Signal Processing
- Parameter Identification via Integral Method
- 7 Velocity and Acceleration Estimation via OKID
- 8 Conclusion
- 🧿 Future Work

What are the parameters to be identified?

• Governing equation:

$$\mathbf{J}\dot{\boldsymbol{\omega}} + {\boldsymbol{\omega}}^{ imes}\mathbf{J}{\boldsymbol{\omega}} = \mathbf{M}_G$$

• The following parameters should be identified:

$$\mathbf{J} = \begin{bmatrix} J_{xx} & J_{xy} & J_{xz} \\ J_{yx} & J_{yy} & J_{yz} \\ J_{zx} & J_{zy} & J_{zz} \end{bmatrix}$$

- System inputs: $\mathbf{M}_G = \begin{bmatrix} M_{Gx} & M_{Gy} & M_{Gz} \end{bmatrix}^T$
- System outputs: $\boldsymbol{\omega} = \begin{bmatrix} \omega_x & \omega_y & \omega_z \end{bmatrix}^T$

Least-Squares Formulation for Inertia Estimation (1/2)

• Least-Squares formulation

$$\underbrace{\mathbf{M}_{G}(t)}_{\mathbf{y}_{3\times 1}} = \underbrace{\begin{bmatrix} \boldsymbol{\varphi}_{1}(t) & \boldsymbol{\varphi}_{2}'(t) & \boldsymbol{\varphi}_{3}'(t) & \boldsymbol{\varphi}_{5}(t) & \boldsymbol{\varphi}_{6}'(t) & \boldsymbol{\varphi}_{9}(t) \end{bmatrix}}_{\boldsymbol{\varphi}_{3\times 6}'} \underbrace{\begin{bmatrix} J_{xx} \\ J_{xy} \\ J_{xz} \\ J_{yy} \\ J_{yz} \\ J_{zz} \\ J_{zz} \\ X_{6\times 1}' \end{bmatrix}}_{\mathbf{X}_{6\times 1}'}$$
(1)

where

$$\varphi'_{2}(t) = \varphi_{2}(t) + \varphi_{4}(t)
\varphi'_{3}(t) = \varphi_{3}(t) + \varphi_{7}(t)
\varphi'_{6}(t) = \varphi_{6}(t) + \varphi_{8}(t)$$
(2)

and

$$\begin{bmatrix} \varphi_1 & \varphi_2 & \varphi_3 & \varphi_4 & \varphi_5 & \varphi_6 & \varphi_7 & \varphi_8 & \varphi_9 \end{bmatrix}_{3 \times 9} \\ = \begin{bmatrix} \dot{\omega}_x \mathbf{I}_3 + \omega_x \boldsymbol{\omega}^{\times} & \dot{\omega}_y \mathbf{I}_3 + \omega_y \boldsymbol{\omega}^{\times} & \dot{\omega}_z \mathbf{I}_3 + \omega_z \boldsymbol{\omega}^{\times} \end{bmatrix}_{3 \times 9}$$
(3)

Problem Statement

Least-Squares Formulation for Inertia Estimation (2/2)

• Given $t = T, 2T, \cdots, nT$ where T is the sample interval, the equation for inertia estimation becomes

$$\begin{bmatrix} \mathbf{M}_{G}(T) \\ \mathbf{M}_{G}(2T) \\ \vdots \\ \mathbf{M}_{G}(nT) \end{bmatrix} = \begin{bmatrix} \varphi_{1}(T) & \varphi_{2}'(T) & \varphi_{3}'(T) & \varphi_{5}(T) & \varphi_{6}'(T) & \varphi_{9}(T) \\ \varphi_{1}(2T) & \varphi_{2}'(2T) & \varphi_{3}'(2T) & \varphi_{5}(2T) & \varphi_{6}'(2T) & \varphi_{9}(2T) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \varphi_{1}(nT) & \varphi_{2}'(nT) & \varphi_{3}'(nT) & \varphi_{5}(nT) & \varphi_{6}'(nT) & \varphi_{9}(nT) \end{bmatrix} \begin{bmatrix} J_{xx} \\ J_{xy} \\ J_{xz} \\ J_{yy} \\ J_{yz} \\ J_{zz} \end{bmatrix}$$

• The least-squares solution for $n \ge 6$ is

$$\begin{bmatrix} J_{xx} \\ J_{xy} \\ J_{xz} \\ J_{yy} \\ J_{yz} \\ J_{zz} \\ J_{zz} \end{bmatrix} = \begin{bmatrix} \varphi_1(T) & \varphi_2'(T) & \varphi_3'(T) & \varphi_5(T) & \varphi_6'(T) & \varphi_9(T) \\ \varphi_1(2T) & \varphi_2'(2T) & \varphi_3'(2T) & \varphi_5(2T) & \varphi_6'(2T) & \varphi_9(2T) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \varphi_1(nT) & \varphi_2'(nT) & \varphi_3'(nT) & \varphi_5(nT) & \varphi_6'(nT) & \varphi_9(nT) \end{bmatrix}^{\dagger} \begin{bmatrix} \mathbf{M}_G(T) \\ \mathbf{M}_G(2T) \\ \vdots \\ \mathbf{M}_G(nT) \end{bmatrix}$$
(5)

(4)

Main Difficulties for Estimating Quadrotor's Parameters

Main Difficulties

- In practical scenarios, flight vehicles' unstable response may be induced for an open-loop excitation input.
- The angular acceleration $[\dot{\omega}_x, \dot{\omega}_y, \dot{\omega}_z]^T$ can not be accurately obtained in general.

Solutions

- To obtain a stable flight trajectory, the closed-loop excitation strategy is presented.
- The Observer/Kalman Filter Identification (OKID) is applied to estimate velocity and acceleration.
- A straightforward method to avoid velocity differentiation amplifying measured noise, namely the integral operator method, is used.

Outline

Introduction

2 Problem Statement

Oynamics Modeling

- 4 Simulation Background and I/O Data
- 5 Signal Processing
- Parameter Identification via Integral Method
- Velocity and Acceleration Estimation via OKID
- 8 Conclusion
- 🧿 Future Work

Section 3

Dynamics Modeling

- Dynamic Configuration and Mathematical Model
- Configuration of Control and System Identification

Dynamic Configuration of Quadrotor

¹Graphic source: https://3dwarehouse.sketchup.com/model/u785a963cb533-46e7-8c19-20482ccda5b8/S500-Quadcopter?hl=en 1

Forces and Torques Generated by Actuators

The force F_{Gz} and torques $[M_{Gx}, M_{Gy}, M_{Gz}]$ expressed as F_i and τ_i generated by actuators:

$$F_{Gz} = F_1 + F_2 + F_3 + F_4$$

$$M_{Gx} = F_1L + F_2L - F_3L - F_4L$$

$$M_{Gy} = -F_1L + F_2L + F_3L - F_4L$$

$$M_{Gz} = \tau_1 - \tau_2 + \tau_3 - \tau_4$$
(6)

Mathematical Model of Quadrotor

• Translation Dynamics

$$m\ddot{X} = 2(q_1q_3 + q_0q_2)F_{Gz}$$

$$m\ddot{\mathbf{P}} = \mathbf{W} + \mathbf{R}_B^G(q_0, \mathbf{q}) \mathbf{F}_a \quad \rightarrow \qquad m\ddot{Y} = 2(q_2q_3 - q_0q_1)F_{Gz}$$

$$m\ddot{Z} = (q_0^2 - q_1^2 - q_2^2 + q_3^2) F_{Gz} - mg$$
(7)

where F_{Gz} is the control force.

Rotation Dynamics

$$\dot{q}_0 = -\frac{1}{2}\mathbf{q}^T\boldsymbol{\omega}$$
 (8)

$$\dot{\mathbf{q}} = \frac{1}{2} \left(q_0 \mathbf{I}_3 + \mathbf{q}^{\times} \right) \boldsymbol{\omega}$$
 (9)

$$\mathbf{J}\dot{\boldsymbol{\omega}} = \mathbf{M}_G - \boldsymbol{\omega}^{\times} \mathbf{J}\boldsymbol{\omega} \tag{10}$$

where $\mathbf{M}_G = [M_{Gx}, M_{Gy}, M_{Gz}]^T$ is the control torque.

Flight Controllers

Altitude Controller

$$F_{Gz} = \frac{m}{r_{33}} \left[\ddot{Z}_d + g - k_{p,z} \left(Z - Z_d \right) - k_{d,z} \left(\dot{Z} - \dot{Z}_d \right) \right]$$
(11)

where $r_{33} = q_0^2 - q_1^2 - q_2^2 + q_3^2$.

• Attitude Controller

$$\mathbf{M}_{G,u} = -\mathbf{K}_p \mathbf{q} - \mathbf{K}_v \boldsymbol{\omega} \tag{12}$$

Total Input Torque

$$\mathbf{M}_G = \mathbf{M}_{G,u} + \mathbf{r} \tag{13}$$

where **r** is the excitation input.

Actuator Dynamics (Rotor Dynamics)

- Actuator Configuration
 - Thrusts and Torques generated by rotors

$$F_{i} = C_{T} \Omega_{i}^{2}$$

$$\tau_{i} = C_{M} \Omega_{i}^{2}, \quad i = 1, 2, 3, 4.$$
(14)

• Force transmission matrix

$$\begin{bmatrix} F_{G_Z} \\ M_{G_X} \\ M_{G_y} \\ M_{G_z} \end{bmatrix} = \begin{bmatrix} C_T & C_T & C_T & C_T \\ C_T L & C_T L & -C_T L & -C_T L \\ -C_T L & C_T L & C_T L & -C_T L \\ C_M & -C_M & C_M & -C_M \end{bmatrix} \begin{bmatrix} \Omega_1^2 \\ \Omega_2^2 \\ \Omega_3^2 \\ \Omega_4^2 \end{bmatrix}$$
(15)

• Actuator dynamics (For *i*-th rotor)

$$G_a(s) = \frac{\Omega_r(s)}{\Omega_c(s)} = \frac{T_2}{T_1 s + 1}$$
(16)

where $\Omega_r(s) = \mathcal{L}\{\Omega_c(t)\}$. $T_1 = 0.001$, $T_2 = 0.99$ are considered in the following simulations.

Control Configuration of Quadrotor

How to Perform the Inertia Estimation?

Outline

- Introduction
- Problem Statement
- Dynamics Modeling
- 4 Simulation Background and I/O Data
 - Signal Processing
 - Parameter Identification via Integral Method
 - Velocity and Acceleration Estimation via OKID
- 8 Conclusion
- 🧿 Future Work

Section 4

Simulation Background and I/O Data

- Simulation Background
- I/O Data

Simulation Background

Simulation Background:

- Sample Step Size of RK4: 0.0005 (sec)
- Sample Interval of Output Data: 0.01 (sec)
- Zero-Order-Hold Interval of Control Inputs: 0.1 (sec)
- Number of Data: 7001 Points
- Control Gains: $\mathbf{K}_p = \operatorname{diag}([6, 6, 6]); \mathbf{K}_v = \operatorname{diag}([5, 5, 5])$
- Excitation Inputs r: PRBS sequences ($T_{zoh} = 2$ (sec)).
- C_T , C_M , L, m, g, T_1 , $T_2 \rightarrow$ Pre-identified parameters.

Reference Altitude Command and Excitation Input

NCKU IAA IEC-Lab (IEC)

Desired Rotor Speed and Real Rotor Speed

Real Rotor Speed and Measured Rotor Speed

Real Torque and Measured Torque

NCKU IAA IEC-Lab (IEC)

Real Output and Measured Output

Position and Velocity

Outline

- Introduction
- Problem Statement
- 3 Dynamics Modeling
- Interpretation Background and I/O Data

Signal Processing

- Parameter Identification via Integral Method
- Velocity and Acceleration Estimation via OKID
- 8 Conclusion
- 🧿 Future Work

Section 5

Signal Processing

- Spectrum Analysis
- Signal Processing for I/O Data

Signal Processing

Spectrum Analysis

NCKU IAA IEC-Lab (IEC)

Signal Processing

Measured Rotor Speed and Filtered Rotor Speed

NCKU IAA IEC-Lab (IEC)

Measured Velocity and Filtered Velocity

Input Torque Reconstruction

Outline

- Introduction
- Problem Statement
- 3 Dynamics Modeling
- 4 Simulation Background and I/O Data
- 5 Signal Processing

- Velocity and Acceleration Estimation via OKID
- 8 Conclusion
- 🧿 Future Work

Section 6

Parameter Identification via Integral Method

- A. Using Filtered Input and Output Data
- B. Using Desired Input and Filtered Output Data

A. Using Filtered Input and Output Data ($\lambda = 1$)

B. Using Desired Input and Filtered Output ($\lambda = 1$)

Comparison of Parameter Estimates

Para.	Real	Case A	Case B
J_{xx}	5.0000	5.0863 (1.73)	5.2316 (4.62)
J_{xy}	-2.0000	-2.0506 (2.53)	-2.1054 (5.27)
J_{xz}	-1.0000	-0.9101 (8.99)	-0.9905 (0.95)
J_{yy}	6.0000	6.1619 (2.70)	6.2360 (3.93)
J_{yz}	-4.0000	-4.0039 (0.01)	-4.0621 (1.55)
J_{zz}	7.0000	6.6614 (4.84)	6.9693 (0.49)

Table: Root-mean-squares error of predicted error for Case A and Case B.

RMSE	Case A	Case B
$e_{rms,x} = \omega_x - \omega_{x,p}$	0.011	0.028
$e_{rms,y} = \omega_y - \omega_{y,p}$	0.017	0.015
$e_{rms,z} = \omega_z - \omega_{z,p}$	0.016	0.012

Outline

- Introduction
- Problem Statement
- 3 Dynamics Modeling
- 4 Simulation Background and I/O Data
- 5 Signal Processing
- Parameter Identification via Integral Method

🧑 Velocity and Acceleration Estimation via OKID

- B Conclusion
- 🧿 Future Work

Section 7

Velocity and Acceleration Estimation via OKID

- Observer Equation
- Velocity and Acceleration Estimation via Okid
- Simulation Results

Observer Equation of Okid (1/2)

- Input and Output data
 - Angular velocity (Filtered) $\mathbf{y} = \begin{bmatrix} \omega_x & \omega_y & \omega_z \end{bmatrix}^T$ Desired control torque $\mathbf{u} = \begin{bmatrix} M_{Gx} & M_{Gy} & M_{Gz} \end{bmatrix}^T$ (17)
- Using OKID gives the following observer equation

$$\tilde{\mathbf{x}}(k+1) = \tilde{\mathbf{A}}\tilde{\mathbf{x}}(k) + \tilde{\mathbf{B}}\mathbf{u}(k) + \tilde{\mathbf{G}}\left[\tilde{\mathbf{y}}(k) - \mathbf{y}(k)\right], \quad \tilde{\mathbf{x}}(0) = \tilde{\mathbf{x}}_0$$

$$\tilde{\mathbf{y}}(k) = \tilde{\mathbf{C}}\tilde{\mathbf{x}}(k) + \tilde{\mathbf{D}}\mathbf{u}(k)$$
(18)

where

$$\begin{split} \tilde{\mathbf{A}} : & 3p \times 3p \qquad \tilde{\mathbf{B}} : & 3p \times 3 \\ \tilde{\mathbf{C}} : & 3 \times 3p \qquad \tilde{\mathbf{D}} : & 3 \times 3 \qquad \tilde{\mathbf{G}} : & 3p \times 3 \end{split}$$
 (19)

and p is the order of ARX model.

 $\bullet~$ The force transmission matrix $\tilde{D}=0$ for velocity and acceleration measurements.

Observer Equation of Okid (2/2)

• Let p = 1. The system matrices of observer equation are

$$\tilde{\mathbf{A}} = \begin{bmatrix} 0.9999 & 0.0002 & -0.0004 \\ -0.0003 & 1.0002 & -0.0003 \\ -0.0002 & 0.0002 & 0.9997 \end{bmatrix}; \qquad \tilde{\mathbf{B}} = \begin{bmatrix} 0.0027 & 0.0018 & 0.0014 \\ 0.0017 & 0.0034 & 0.0023 \\ 0.0013 & 0.0020 & 0.0028 \end{bmatrix};$$
$$\tilde{\mathbf{C}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \qquad \qquad \tilde{\mathbf{G}} = \begin{bmatrix} -0.9999 & -0.0002 & 0.0004 \\ 0.0003 & -1.0002 & 0.0003 \\ 0.0002 & -0.0002 & -0.9997 \end{bmatrix}$$
(20)

 $\bullet~$ The eigenvalues of $\tilde{\mathbf{A}}$ are

$$\lambda(\tilde{\mathbf{A}}) = \begin{bmatrix} 1.0001 + 0.0001i \\ 1.0001 - 0.0001i \\ 0.9997 \end{bmatrix}$$
(21)

• The estimated initial condition is

$$\tilde{\mathbf{x}}_{0} = \begin{bmatrix} 0.0273\\ -0.0073\\ 0.0291 \end{bmatrix}; \quad \mathbf{y}(0) = \begin{bmatrix} 0.0273\\ -0.0073\\ 0.0291 \end{bmatrix}$$
(22)

Velocity and Acceleration Estimations via Okid (1/2)

• The velocity estimates are the outputs of observer equation.

$$\begin{bmatrix} \hat{\omega}_x(k) & \hat{\omega}_y(k) & \hat{\omega}_z(k) \end{bmatrix} = \tilde{\mathbf{y}}(k)$$
(23)

- The acceleration estimates can be determined by the following steps:
 - Convert the discrete-time system matrices (\tilde{A}, \tilde{B}) into continuous-time system matrices $(\tilde{A}_c, \tilde{B}_c)$.

$$\begin{split} \dot{\tilde{\mathbf{x}}}(t) &= \tilde{\mathbf{A}}_c \mathbf{x}(t) + \tilde{\mathbf{B}}_c \mathbf{u}(t) \\ \tilde{\mathbf{y}}(t) &= \tilde{\mathbf{C}} \tilde{\mathbf{x}}(t) \end{split} \tag{24}$$

• Differentiating $\tilde{\mathbf{y}}(t)$ gives

$$\dot{\tilde{\mathbf{y}}}(t) = \tilde{\mathbf{C}}\dot{\tilde{\mathbf{x}}}(t)$$
 (25)

$$= \tilde{\mathbf{C}}\tilde{\mathbf{A}}_{c}\tilde{\mathbf{x}}(t) + \tilde{\mathbf{C}}\tilde{\mathbf{B}}_{c}\mathbf{u}(t)$$
(26)

 Given $t=T,2T,\cdots,kT$ where T is the sample interval, the acceleration estimates in sample index are

$$\begin{aligned} \left[\hat{\omega}_x(k) \quad \hat{\omega}_y(k) \quad \hat{\omega}_z(k) \right] &= \dot{\tilde{\mathbf{y}}}(k) \\ \dot{\tilde{\mathbf{y}}}(k) &= \tilde{\mathbf{C}} \tilde{\mathbf{A}}_c \tilde{\mathbf{x}}(k) + \tilde{\mathbf{C}} \tilde{\mathbf{B}}_c \mathbf{u}(k) \end{aligned}$$

$$(27)$$

• where $k = 1, 2, \dots, n$. Notice that the estimated states $\tilde{\mathbf{x}}(k)$ are computed from observer equation (18).

Velocity and Acceleration Estimations via Okid (2/2)

• Conclusively, we can use the measured info to estimate velocity and acceleration:

$$\tilde{\mathbf{x}}(k+1) = \tilde{\mathbf{A}}\tilde{\mathbf{x}}(k) + \tilde{\mathbf{B}}\mathbf{u}(k) + \tilde{\mathbf{G}}\left[\tilde{\mathbf{y}}(k) - \mathbf{y}(k)\right], \quad \tilde{\mathbf{x}}(0) = \tilde{\mathbf{x}}_{0}$$

$$\tilde{\mathbf{y}}(k) = \tilde{\mathbf{C}}\tilde{\mathbf{x}}(k)$$

$$\dot{\tilde{\mathbf{y}}}(k) = \tilde{\mathbf{C}}\tilde{\mathbf{A}}_{c}\tilde{\mathbf{x}}(k) + \tilde{\mathbf{C}}\tilde{\mathbf{B}}_{c}\mathbf{u}(k)$$

$$\hat{\boldsymbol{\omega}}(k) = \tilde{\mathbf{y}}(k)$$

$$\hat{\boldsymbol{\omega}}(k) = \dot{\tilde{\mathbf{y}}}(k)$$
(28)

where

$$\tilde{\mathbf{A}}_{c} = \begin{bmatrix} -0.0071 & 0.0217 & -0.0383\\ -0.0287 & 0.0203 & -0.0285\\ -0.0222 & 0.0158 & -0.0305 \end{bmatrix}; \quad \tilde{\mathbf{B}}_{c} = \begin{bmatrix} 0.2738 & 0.1774 & 0.1394\\ 0.1741 & 0.3388 & 0.2276\\ 0.1315 & 0.2049 & 0.2830 \end{bmatrix}$$
(29)

• The eigenvalues of $\tilde{\mathbf{A}}_c$ are

$$\lambda(\tilde{\mathbf{A}}_c) = \begin{bmatrix} 0.0071 + 0.0087i \\ 0.0071 - 0.0087i \\ -0.0315 \end{bmatrix}$$
(30)

Comparison of Velocity and Estimated Velocity

Comparison of Acceleration and Estimated Acceleration

Output Prediction Using Identified Parameters

Comparison of Parameter Estimates

Para.	Real	Integral Method (A)	OKID	Diff.
J_{xx}	5.0000	5.0863 (1.73)	5.4292 (8.58)	3.7611 (24.78)
J_{xy}	-2.0000	-2.0506 (2.53)	-2.1101 (5.51)	-1.06 (46.76)
J_{xz}	-1.0000	-0.9101 (8.99)	-0.9690 (3.10)	-0.94 (6.27)
J_{yy}	6.0000	6.1619 (2.70)	6.3449 (5.75)	3.5322 (41.43)
J_{yz}	-4.0000	-4.0039 (0.10)	-3.9658 (0.85)	-2.0520 (48.70)
J_{zz}	7.0000	6.6614 (4.84)	7.2065 (2.95)	4.8985 (30.02)

Table: Comparison of real and identified parameters (Integral Method, OKID and Diff.).

Table: Root-mean-squares error of predicted error for different approaches (Integral Method and OKID).

RMSE	Integral Method	OKID
$e_{rms,x} = \omega_x - \omega_{x,p}$	0.011	0.043
$e_{rms,y} = \omega_y - \omega_{y,p}$	0.017	0.020
$e_{rms,z} = \omega_z - \omega_{z,p}$	0.016	0.018

Outline

- Introduction
- Problem Statement
- 3 Dynamics Modeling
- 4 Simulation Background and I/O Data
- 5 Signal Processing
- Parameter Identification via Integral Method
- Velocity and Acceleration Estimation via OKID

8 Conclusion

🕖 Future Work

Section 8

Conclusion

Conclusion

Cluclusion

- The least-squares formulation for estimating the parameters of the Euler equation is proposed.
- A closed-loop excitation strategy is presented for obtaining the stable flight trajectory.
- The integral operator method is introduced to perform the parameter identification.
- The velocity and acceleration estimation via OKID is conducted.
- The simulation results reveal that using OKID gives a better parameter estimating performance than numerical differentiation.
- The integral method provides the best parameter estimation in three approaches.

Outline

- Introduction
- Problem Statement
- 3 Dynamics Modeling
- 4 Simulation Background and I/O Data
- 5 Signal Processing
- Parameter Identification via Integral Method
- Velocity and Acceleration Estimation via OKID
- 8 Conclusion

🧿 Future Work

Section 9

Future Work

Future Work

Future Work

Future Work

• Experimental Validation.